La tabla periódica
jueves, 18 de octubre de 2018
BIBLIOGRAFÍA
- Raymond Chang, "Quimica" Sexta Edición, McGraw-Hill Pág. 248 – 250.
- Whitten, "Química General" Quinta Edición, McGraw-Hill Pág. 348–216–218–174.
- Principios de Química, Pág. 84 -85–95–96–97.
- Microsoft Encarta 2002
- J. B. Russell, "Química" McGRaw-Hill / Interamericana de México
- Geoff Rayner, "Química Inorgánica Descriptiva" Segunda Edición, Prentice Hall.
FUENTES DE CONSULTA
https://www.monografias.com/trabajos12/taper/taper.shtml
https://deconceptos.com/ciencias-naturales/tabla-periodica
https://historia-biografia.com/historia-de-la-tabla-periodica/
https://paraquesirven.com/para-que-sirve-la-tabla-periodica/
https://youtu.be/PsW0sGF5EBE
CONCLUSIÓN
- Se conoce que en la tabla periódica existen 5 características de los elementos las cuales son: los elementos que son metales, los no metales, metales de transición, metaloides y los gases nobles o inherentes, pero los de mayor abundancia son los elementos metálicos la cuales gobierna casi toda la tabla periódica.
- La tabla periódica está organizada en grupos y periodos las cuales son 18 grupos y que cada grupo está caracterizado por el elemento que los representa y son 7 periodos las cuales esta organizados por medio de la característica química semejantes a los demás.
- Relacionando este tema con la química moderna pues es de mucha importancia para esas personas que estudian medicina, ingeniería entre otros ya que ellos se encargan de estudiar perfectamente las propiedades de los elementos las cuales lo utilizan para crear antibióticos, medicina, creación de chips entre otros.
- Por medio de la investigación realizada nos es útil para conocer que en nuestro universo no solo existen unos cuantos elementos como lo son más comunes: oro, plata, calcio, oxigeno, cobre, hierro, hidrogeno, yodo, carbono, mercurio etc. Sino que en nuestro universo existen 118 elementos y que están bien organizado en la tabla periódica y por ello los resultado es sobre la química moderna, sin ello no existirían las medicinas y mucho menos la anestesia que lo usan los médicos para que la persona no sienta ningún dolor por lo tanto gracias a la química es por eso que estamos vivimos y rodeados de la comodidad.
TRABAJOS DE NIELS BHOR
En 1913, el físico danés Niels Bohr revisó radicalmente el concepto de la emisión de radiación por partículas eléctricamente cargadas que se mueven en órbitas en el interior del átomo, a la que hasta entonces se había aplicado la teoría electromagnética del físico británico James Clerk Maxwell. Bohr introdujo un modelo que combinaba la teoría clásica de Maxwell con la teoría cuántica de Planck. Empleando esa teoría híbrida, Bohr obtuvo una fórmula general para la radiación emitida por el átomo de hidrógeno, que no sólo proporcionaba las longitudes de onda de las líneas de Balmer, sino que predecía correctamente otras series de líneas que se observaron posteriormente en la zona ultravioleta e infrarroja del espectro del hidrógeno.
El razonamiento de Bohr era que la existencia de un átomo como el hidrógeno, formado por un protón cargado positivamente y un electrón cargado negativamente que gira alrededor de él, sólo se puede entender a partir de una determinada distancia básica entre ambos que explique las dimensiones estables del átomo (es decir, que explique por qué el electrón no "cae" en el núcleo). Como las consideraciones dimensionales demuestran que esta distancia no puede obtenerse mediante una combinación matemática que implique exclusivamente la carga del electrón, e, y su masa, m, Bohr argumentó que había que introducir en la teoría atómica otra constante física fundamental que, combinada adecuadamente con las constantes e y m, proporcionara la distancia buscada. Bohr halló que la constante de Planck, h, cumplía bien ese cometido, y sugirió que la distancia básica venía dada por la combinación matemática:
El valor de esta distancia es de 5,29·10-11 m, que constituye el llamado radio de Bohr del átomo de hidrógeno. Este valor también se denomina radio de la primera órbita de Bohr. Bohr utilizó un concepto revolucionario y totalmente opuesto a la física clásica, introducido por la teoría cuántica. Según este concepto, existe una cantidad física llamada acción que está cuantizada en unidades de valor h (lo que significa que no puede haber una acción menor que h). Bohr explicó la estabilidad del átomo de hidrógeno asignando una única unidad de acción a la primera de las llamadas órbitas de Bohr. Con ello se eliminaba cualquier posible órbita más pequeña, porque una órbita así tendría una acción menor que h, lo que violaría la hipótesis cuántica. A continuación, Bohr supuso que cada órbita permitida del electrón, a medida que se aleja del protón, difiere de la órbita inmediatamente anterior en una única unidad de acción h. Por tanto, la acción de la segunda órbita debe ser 2h, la acción de la tercera órbita 3h, y así sucesivamente. Esto significa que la acción de la órbita número n, donde n es un entero, debe ser nh, y entonces se puede demostrar que el radio de la n-ésima órbita tiene que ser:
Por la dinámica clásica, Bohr sabía que la energía total cinética y potencial de una partícula que se mueve en una órbita circular es negativa, porque la energía potencial negativa de la órbita es mayor que su energía cinética (que es positiva). Además, la energía total es inversamente proporcional al radio de la órbita. Por tanto, asignó a la energía del electrón en la órbita n-ésima el valor:
multiplicando la inversa del radio por e2/2 y cambiando su signo por motivos dimensionales. Cuando el electrón salta de la órbita n-ésima a la órbita k-ésima, experimenta un cambio de energía igual a:
o
Este cambio aparece en la forma de un único cuanto de energía, o fotón, emitido o absorbido. Cuando k es mayor que n, se absorbe un fotón; cuando k es menor que n, se emite un fotón.
Así, se llega a la fórmula de Bohr para la inversa de la longitud de onda del fotón emitido cuando el electrón salta de la órbita n a la órbita k, al igualar la fórmula anterior con signo cambiado y la energía del fotón, hc/ë. Esto proporciona la ecuación:
La cantidad:
se conoce como constante de Rydberg, R, en honor al físico sueco Robert Johannes Rydberg
Procedimiento experimental
Experimento n° 01: análisis espectral cualitativo
Materiales y reactivos
- Mechero Bunsen
- Alambre de platino o nicrón
- 7 tubos de ensayo
Soluciones de:
- HCl concentrado
- NaCl
- KCl
- LiCl
- CaCl2
- SrCl2
- BaCl2
Procedimiento:
1. Tome el alambre de icrón e introdúzcalo en la parte incolora de la llama del mechero de Bunsen; si la llama se colorea es que existe impureza en el alambre; para quitarla se sumerge el alambre en el tubo de ensayo que contiene el HCl conc., y se lleva nuevamente a la llama. Esta operación se repite varias veces hasta que el alambre no coloree la llama del mechero.
2. Caliente el alambre, toque en él un poco de NaCl y llévelo a la parte azul de la llama. Observe qué color se produce en la llama y anote.
3. Luego se prosigue con las demás soluciones.
Cuestionario
- ¿Qué es un cuanto, qué es un fotón?
- Planck le dio el nombre de cuanto a la mínima cantidad de energía que podía ser emitida o absorbida en forma de radiación electromagnética.Einstein sugirió que un rayo de luz es en realidad una corriente de partículas de luz, que ahora se conocen como fotones.Los espectros de emisión de los átomos en la fase gaseosa no muestran una distribución continua de de longitudes de onda desde el rojo al violeta; en lugar de ello, los átomos producen líneas brillantes en diferente partes del espectro visible. Estos espectros de líneas corresponden a las emisiones de luz sólo a longitudes de ondas específicas.La forma de espectro más sencilla, llamada espectro continuo, es la emitida por un cuerpo sólido o líquido que puede ser llevado hasta altas temperaturas. Estos espectros no presentan líneas porque contienen luz de todos los colores, que se suceden sin solución de continuidad como en un arco iris.
- ¿Qué es un espectro de líneas y espectro continuo?Cuando a través de un gas a muy baja presión en un tubo de vacío se pasa una corriente eléctrica, la luz que emite el gas se dispersa por un prisma en diferentes líneas, tal espectro de emisión se describe como un espectro de líneas brillantes; pero cuando iluminamos u gas con un haz de luz blanca y analizar el haz que emerge encontramos que solo se han absorbido ciertas longitudes de onda, tal espectro de absorción redescribe como un espectro de líneas opacas.
- Diferencias entre espectro de emisión y espectro absorción.
- ¿A qué se debe el color de la llama al excitar un átomo?
El color que observamos es parte del espectro de emisión que el ojo puede percibir. Nosotros al darle calor el átomo se excita, succión a un nivel superior, y está cuando regresa a su estado original emite energía con una determinada longitud de onda. Esta longitud de onda se encuentra en el rango visible: 380 nm – 700 nm.
5. Llenar el siguiente cuadro de resultados.
CLORUROS
|
FÓRMULA
|
COLOR DE LA LLAMA
|
LÍNEA CARACT.
|
Sodio
Potasio
Litio
Calcio
Estroncio
Bario
|
NaCl
KCl
LiCl
CaCl2
SrCl2
BrCl2
|
Amarillo
Lila
Carmesí
Indigo
Azul
Verde amarillento
|
5890 Å
4044 Å
6708 Å
4226 Å
4607 Å
5535 Å
|
6 ¿Presentan los elementos los mismos espectros? Explique su respuesta.
Cada elemento tiene su propio espectro debido a que los diferentes colores o longitudes de onda (y, por tanto, las diferentes energías) de los cuantos de luz emitidos o absorbidos por un átomo o molécula, dependen de la estructura de éstos y de los posibles movimientos periódicos de las partículas que los componen, ya que estos dos factores determinan la energía total (potencial y cinética) del átomo o molécula.
7. Se tiene una solución problema, en la cual se identificarán qué elemento o elementos se encuentran presentes
Las líneas características de un espectro atómico se pueden usar en análisis químico para identificar átomos desconocidos, igual que las huellas digitales sirven para identificar a una persona. Cuando las líneas del espectro de emisión de un elemento conocido coinciden con las líneas de un espectro de emisión de una muestra desconocida rápidamente se identifica a ésta.
TEORÍA CUÁNTICA
El desarrollo de la teoría cuántica y su aplicación a la estructura atómica, enunciada por el físico danés Niels Bohr y otros científicos, ha aportado una explicación fácil a la mayoría de las características detalladas del sistema periódico. Cada electrón se caracteriza por cuatro números cuánticos que designan su movimiento orbital en el espacio. Por medio de las reglas de selección que gobiernan esos números cuánticos, y del principio de exclusión de Wolfgang Pauli, que establece que dos electrones del mismo átomo no pueden tener los mismos números cuánticos, los físicos pueden determinar teóricamente el número máximo de electrones necesario para completar cada capa, confirmando las conclusiones que se infieren del sistema periódico.
Desarrollos posteriores de la teoría cuántica revelaron por qué algunos elementos sólo tienen una capa incompleta (en concreto la capa exterior, o de valencia), mientras que otros también tienen incompletas las capas subyacentes. En esta última categoría se encuentra el grupo de elementos conocido como lantánidos, que son tan similares en sus propiedades que Mendeléiev llegó a asignarle a los 14 elementos un único lugar en su tabla.
Sistema Periódico Largo
La aplicación de la teoría cuántica sobre la estructura atómica a la ley periódica llevó a reformar el sistema periódico en la llamada forma larga, en la que prima su interpretación electrónica. En el sistema periódico largo, cada periodo corresponde a la formación de una nueva capa de electrones. Los elementos alineados tienen estructuras electrónicas estrictamente análogas. El principio y el final de un periodo largo representan la adición de electrones en una capa de valencia; en la parte central aumenta el número de electrones de una capa subyacente.
Procedimiento Experimental
Experimento N°01: Relación de las familias de los elementos químicos
Se tratará de dar especial atención a las propiedades características de uno o dos elementos comunes en cada grupo y las relaciones entre sus propiedades y aquellas de sus congéneres en el grupo.
Estudiaremos experimentalmente las variaciones en el carácter electropositivo y electronegativo de los elementos. El carácter electropositivo será identificado con las tendencias ácidas de los compuestos que forman los no metales. Para ello hemos escogido los elementos de los grupos I, II y III (metales) y el grupo VII (no metales).
TEORÍA DE LA CAPA ELECTRÓNICA
En la clasificación periódica, los gases nobles, que no son reactivos en la mayoría de los casos (valencia = 0), están interpuestos entre un grupo de metales altamente reactivos que forman compuestos con valencia +1 y un grupo de no metales también muy reactivos que forman compuestos con valencia -1. Este fenómeno condujo a la teoría de que la periodicidad de las propiedades resulta de la disposición de los electrones en capas alrededor del núcleo atómico. Según la misma teoría, los gases nobles son por lo general inertes porque sus capas electrónicas están completas; por lo tanto, otros elementos deben tener algunas capas que están sólo parcialmente ocupadas, y sus reactividades químicas están relacionadas con los electrones de esas capas incompletas. Por ejemplo, todos los elementos que ocupan una posición en el sistema inmediatamente anterior a un gas inerte, tienen un electrón menos del número necesario para completar las capas y presentan una valencia -1 y tienden a ganar un electrón en las reacciones. Los elementos que siguen a los gases inertes en la tabla tienen un electrón en la última capa, y pueden perderlo en las reacciones, presentando por tanto una valencia +1.
Un análisis del sistema periódico, basado en esta teoría, indica que la primera capa electrónica puede contener un máximo de 2 electrones, la segunda un máximo de 8, la tercera de 18, y así sucesivamente. El número total de elementos de cualquier periodo corresponde al número de electrones necesarios para conseguir una configuración estable. La diferencia entre los subgrupos A y B de un grupo dado también se puede explicar en base a la teoría de la capa de electrones. Ambos subgrupos son igualmente incompletos en la capa exterior, pero difieren entre ellos en las estructuras de las capas subyacentes. Este modelo del átomo proporciona una buena explicación de los enlaces químicos.
Suscribirse a:
Entradas (Atom)